Transplantation Immunology

เรียบเรียงโดย นพ.ศรีปกรณ์ อ่อนละม้าย อาจารย์ที่ปรึกษา อ.นพ.ราวิน วงษ์สถาปนาเลิศ บรรยายโดย อ.นพ.ประเวชย์ มหาวิทิตวงศ์

Overview

- History of transplantation immunology
- Breakthrough event
- Timeline
- Definitions
- Transplantation
- Organ transplantation
- Type of grafts
- Immune response
- Transplant Antigens
- Major histocompatibility complex
- Human leukocyte antigens

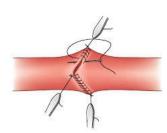
- Cellular component
- Transplant rejection
- T-cell activation
- Clinical rejection
- Pre-transplant crossmatch
- Immunosuppression
- General principle
- Immunosuppressive drugs
- Difference phases of therapy
- Complication of immunosuppression

History of transplant immunology

Alexis Carrel

Breakthrough event

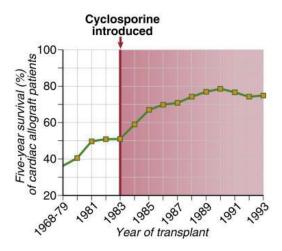
Surgical aspect: Alexis Carrel (French)


- Developed technique of vascular anastomosis

Biological aspect: Sir Peter Brian Medawar (1940s, British)

- Skin graft in animal models and human burn patient
- Reported allograft rejection
- \rightarrow "Transplant immunology"

Sir Peter Brian Medawar

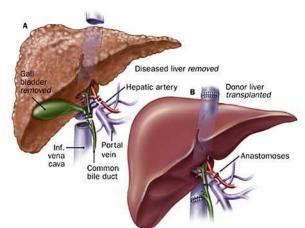

First vascular anastomosis

Timeline

- 1954 Murray 1st Kidney Tx
- Early 1960s Combined immunosuppression
- 1963 Starzl 1st Liver Tx
 - Hardy 1st Lung Tx
- 1966 Lillehei 1st Pancreas Tx
- 1967 Barnard 1st Heart Tx

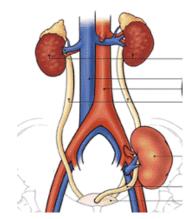
Lillehei 1st Small intestine Tx

- Early 1980s Cyclosporine

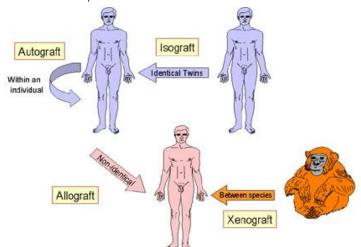

Influence of cyclosporine on graft survival

Definitions

Transplantation: The process of transferring an organ, tissue or cell from one place to another
 Graft: The process of taking cells, tissues or organs
 Donor: The individual who provides the graft


Recipient/Host: The individual who receives the graft

Organ transplantation: A surgical procedure in which a failing organ is replaced by a functioning one
 Orthotopic: Implanted in <u>same anatomical</u> location e.g. heart, lung, liver, intestine

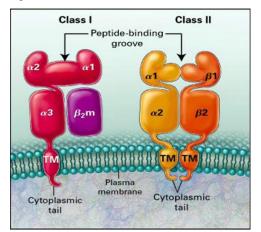

Heterotopic: Implan

Implanted in another anatomical location e.g. kidney, pancreas

- Type of grafts

Autograft:	same person
lsograft:	genetically identical twin
Allograft:	to another same species
Xenograft:	to different species

Immune response


- Transplant Antigens
- Major histocompatibility antigens MHC
 Main antigens of grafts rejection
 Difference of HLA types is the main cause of human graft rejection
 Several different classes of T-cells may recognize MHC molecule
- Minor histocompatibility antigens
 - Also cause grafts rejection, but slow and weak
 - Several minor antigens may result in rejection, even when MHC antigens are concordant between donor and recipient
- Other alloantigens
 - Human ABO Bl.group antigens
 - Some tissue specific antigens
 - O Skin, kidney, heart, pancreas, liver
 - O Vascular endothelial cell (VEC) antigen
 - O Skjelbred (SK) antigen
- Major histocompatibility complex (MHC)
- Highly polymorphism
- Genes are found on chromosome 6
- Essential for T-cell recognition and response

MHC class I antigens

- O HLA-A, HLA-B, HLA-C
- These antigens are glycoproteins found on surfaces of all nucleated human cells and platelets
- Class I MHC antigens are involved of MHC restriction of cell mediated cytotoxicity

MHC class II antigens

- O HLA-DP, HLA-DQ, HLA-DR
- O These antigens are glycoprotein found on the surface of macrophages, B-lymphocytes, dendritic cells, langerhans cells, activated T cells, endothelial cells, thymic epithelium

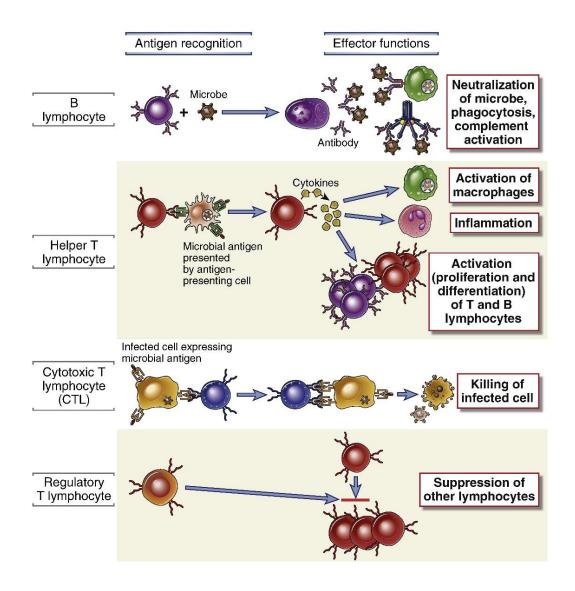
Major histocompatibility complex

Feature	MCH class I	MCH class II	
HLA	HLA-A, HLA-B, HLA-C	HLA-DP, HLA-DQ, HLA-DR	
Types of APCs	All nucleated somatic cells	Macrophages, B-lymphocytes, dendritic	
		cells, Langerhans cells, activated T cells	
Responsive T cells	CD8+	CD4+	
	Cytotoxic T-cells	Helper T-cells	
Functions	Presentation of Antigen to TC cells	Presentation of Antigen to TH cells which	
	leading to elimination of tumor or	secrete cytokines	
	infected host cell		

- Human leukocyte antigens (HLA)
- To present the fragment of foreign proteins to T-lymphocytes
- Lead to recognition ightarrow elimination of the foreign antigen
- HLA trigger rejection
 - Cellular rejection by T-lymphocyte
 - Humoral rejection by circulating Ab against the donor's HLA

- Cellular components
- T-lymphocyte

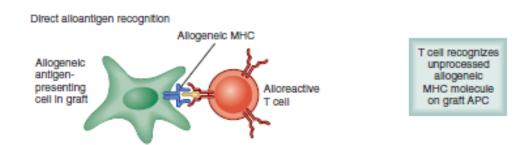
Play a major role in cell-mediated immunity


CD8-positive T-cells : cytotoxic T-cells

- O Response to antigenic peptide derived from intracellular protein bound to MHC class I
- O Function \rightarrow Cell lysis

CD4-positive T-cells : helper T-cells

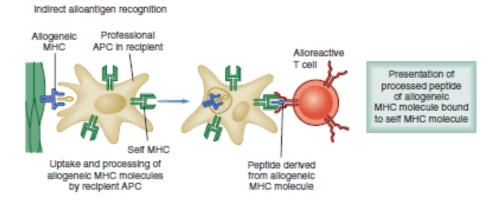
- O Engage antigenic peptide derived from extracellular protein bound to MHC class II
- Function \rightarrow coordinating the efficacy of innate immune response, promoting the activation and proliferation of CD8+
- B-lymphocyte


Play a major role in antibody-mediated immunity

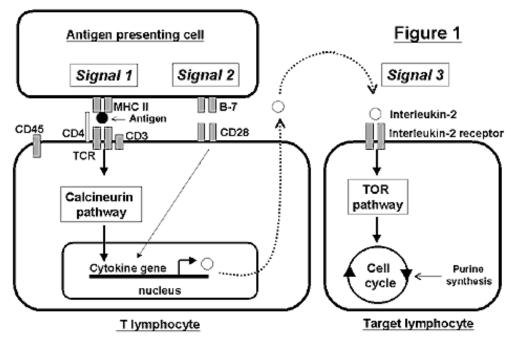
Transplant rejection

- Mechanisms of Graft Rejection Types
- T cell-mediated Reactions
 - Direct Pathway
 - Indirect Pathway
- Antibody-Mediated Reactions
- Recognition of alloantigens
- Direct presentation

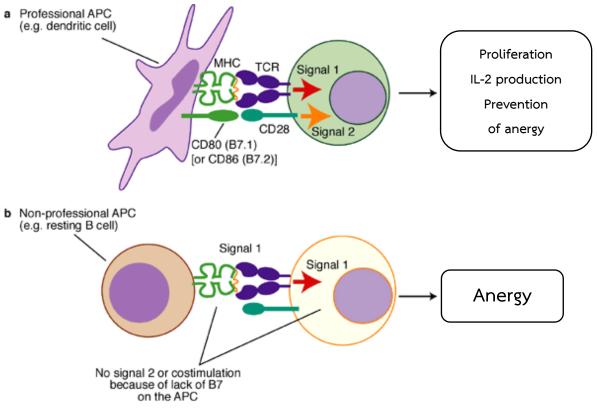
Recipient's T-cells are activated by direct interaction with the donor's HLA molecules Involves both CD8+ and CD4+ T-cells


- Indirect presentation

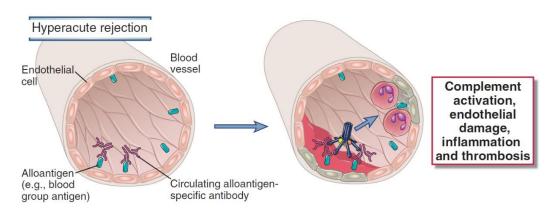
Recipient's T-cells are activated by interaction with APCs that have processed and presented the foreign antigen


Recipient APCs are able to process the donor Ag and present the resulting foreign peptides to T-cells using self MHC molecules

The host APCs digest the foreign Ag through phagocytosis


The peptides from the digested complex ate presented by host MHC molecules to either CD4+ or CD8+ T-cells

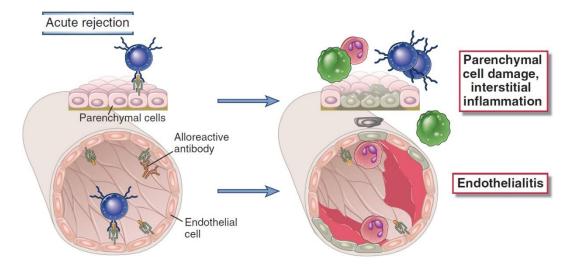
• T-lymphocyte activation



- Signal 1: Antigen Presenting cells: T-cell receptor (TCR)
- Signal 2: Co-stimulatory molecule: CD28 (on surface T cell) \rightarrow ligand CD80 (B7-1),or CD86(B7-2)
- Signal 3: Cytokine production and release

The role of signal 1 and 2 T-cell activation

- Clinical rejection
- Hyperacute rejection
 Within minute-hour following graft reperfusion
 Mediated by preformed antibody
 Irreversible damage, Untreatable
 Preventable → "pre-transplant crossmatch"
 Target is donor vascular endothelium
 Rapid diffuse intravascular thrombosis, graft necrosis

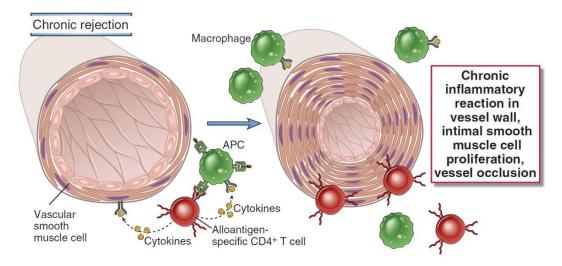


- Acute rejection

Occur within a few days-weeks post-transplant

Mechanism

- O T-cell mediated rejection (TCMR)
- O Antibody-mediated rejection (ABMR)- (humoral pathway)



- Chronic rejection
 - Slow type of rejection
 - Progress gradually over several years

Mechanism

- O Immunologic mediated
- O Non-immunologic mediated
- Lead to fibrosis and loss of graft function

Immunologic mediated	Non-immunologic mediated	
Associated with presence of anti-donor antibody	lschemia/reperfusion injury	
Repeated/indolent TCMR or ABMR	Oxidative stress	
	Hypertension/dyslipidemia	
	Side effect of medication	

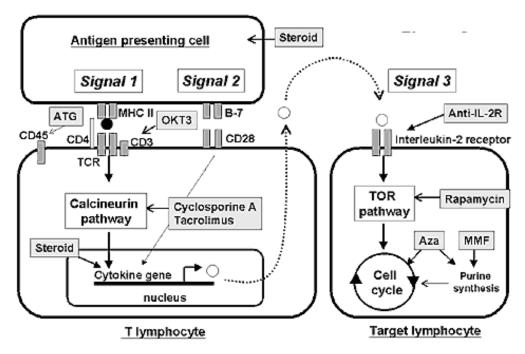
- Pre-transplant crossmatch
- Checking of Compatibility to prevent rejection
- Compatibility of donor and recipient must be determined before transplantation to prevent or minimize rejection
- The following tests are done:
 - ABO blood group compatibility
 - HLA antigens by tissue typing

Cross-matching between recipient's serum for preformed antibodies against donor's HLA antigens

Immunosuppression

- General principle
- Immune reactivity & the likelihood of graft rejection are highest initially and decrease over time
- Use low doses of several drugs with non-overlapping toxicities
- Avoid over-immunosuppression which increases susceptibility to infection and malignancy

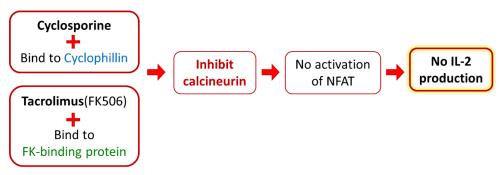
- Immunosuppressive drugs
- Nonbiological immunosuppression Immunophillin binders
 - O Calcineurin inhibitors (CNI) : Cyclosporine, Tacrolimus(FK506)
 - O Non Calcineurin inhibitors (mTOR): Sirolimus, Everolimus


Antimetabolites: Azathioprine, Mycophenolate mofetil (MMF)

- Biological immunosuppression

Polyclonal antibodies

Monoclonal antibodies: Anti-thymoglobulin AntiCD25, AntiCD3


- Other: Corticosteroids

The main site of action of established immunosuppressive drugs

Calcineurin inhibitors (CNI)

- Mechanism of action

- Potency: Tacrolimus >>> Cyclosporine 50 -100 times

- Side Effects of CNI
 - Renal toxicity
 - O Vasoconstriction of the afferent and efferent glomerular arterioles and reductions in renal blood flow & GFR
 - O The increase in renal vascular tone is "usually reversible" when therapy is stopped
 - O Calcium channel blockers can prevent the renal vasoconstriction
 - Hyperkalemia & hypertension
 - a result of their toxic effect on the kidney (High incidence of HT, dyslipidemia for Cyclosporine)
 - Hyperglycemia
 - o reduce insulin gene expression in pancreatic β cells \rightarrow reduced insulin release (High incidence of new onset DM for Tacrolimus)
 - Hypomagnesemia, alopecia, tremor, headache, seizure
 - Gingival hyperplasia, hirsutism (only cyclosporine)
- CNI drug interactions
 - CNI metabolized by P450 enzyme (CYP 3A4)
 - Nephrotoxic Synergy
 - O gentamicin, amphotericin B, cimetidine, bactrim, tobramycin, ketoconazole, ranitidine, vancomycin, diclofenac
 - P-450 3A inhibitors (Increase CNI Levels)
 - O diltiazem, ketoconazole, erythromycin, nicardipine, fluconazole, bromocriptine, methylprednisolone, verapamil, itraconazole, metoclopramide, amphotericin B
 - P-450 3A inducers (Decrease CNI Levels)
 - O rifampin, phenytoin, phenobarbital, carbamazepine

mTOR inhibitors

- Mechanism of action

mTOR (mammalian Target of Rapamycin) regulates transcription, and hence protein synthesis, cell growth, cell proliferation & cell survival

Bind FKBP but does not inhibit calcineurin

Bind and inhibit mTOR and block the <u>response</u> to IL-2by blocking cell cycle progression in G1 ightarrow S

- Side effects

Thrombocytopenia, Dyslipidemia, Impaired wound healing

No renal toxicity

- Sirolimus Vs Everolimus

Sirolimus (Rapamycin)

O 1st mTOR inhibitor

Everolimus

- O higher oral bioavailability
- O shorter half-life
- O more rapid time to steady state
- O eliminates the need for a loading dose

<u>Azathioprine</u>

- Mechanism of action
 - Converted to 6-mercaptopurine
 - Inhibit both the de novo purine synthesis and salvagepurine synthesis
 - Decrease T-cell activity and antibody production
- Side effects
 - Myelosuppression, hepatotoxicity, pancreatitis, etc.
- Drug interaction
 - Allopurinol (block AZA's metabolism)

Mycophenolate mofetil – MMF

- Mechanism of action
 - Derivative of mycophenolic acid (MPA)-prodrug
 - MPA inhibit inosine monophosphate dehydrogenase(IMPDH)
 - IMPDH is rate-limiting enzyme in de novo synthesis of guanosine monophosphate
 - Inhibit T & B lymphocyte proliferation
- Side effects
 - Myelosuppression, GI symptoms, etc.
- Drug interaction

Antacid

_

Antilyphocyte globulin (ATG)

- Polyclonal antibody
- Several immunoglobulin
- Produced by injecting immunogen into animal
- Immunogen may be lymphocyte, thymocyte or T-cell line
- Purified serum solution
- Mechanism of action
 - Lymphocyte depletion
 - Complement dependent cell lysis
 - Cell apoptosis

- Side effects

Cytokine release syndrome

- O Fever with chill 20%
- O Treatable with antipyretics and antihistamine

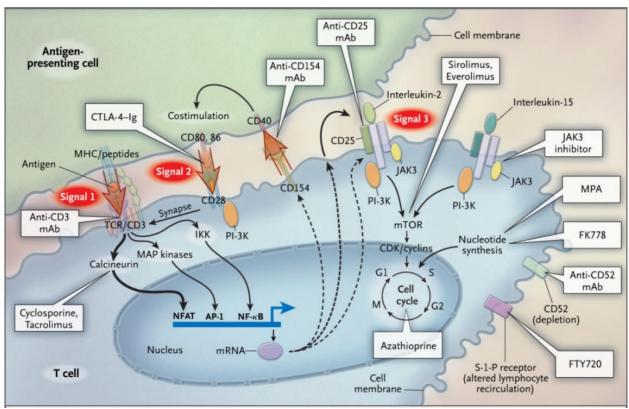
Leucopenia, anemia

Increase viral reactivation and primary viral infections

- Preparation

ATGAM®

O horse antithymocyte globulin


Thymoglobulin®

- O *rabbit* antithymocyte globulin (rATG)
- More effective than ATGAM at reducing the incidence of acute rejection episode

Monoclonal antibodies

- Anti-CD3 Muromonab-CD3 (OKT3)
- Anti-CD25 Basiliximab, Dacluzimab
- Anti-CD20 *Rituximab*
- Anti-CD52 Alemtuzumab

Monoclonal Ab	Mechanism of action	Side effects
Muromonab-CD3	- Bind CD3 associated with the TCR	- Cytokine release syndrome
(OKT3)	- Leading to initial activation and cytokine release	- Pulmonary edema
	- Follow by blockade of function lysis	- ARF
	- T-cell depletion	- CNS change
Basiliximab #	- Bind to high affinity chain of IL-2R (CD25) on	- Hypersensitivity (uncommon)
chimeric	activated T-cells causing depletion	
Dacluzimab	- Preventing IL-2 mediated activation	
# humanized		
Rituximab	- Binds to CD20 on B cells and causes depletion	- Hypersensitivity (uncommon)
Alemtuzumab	- Binds to CD52	- Mild cytokine release
	- Expressed on most T and B-cells, macrophages,	syndrome
	NK cells, monocytes; causing lysis and prolong	- Neutropenia, anemia
	depletion	- Autoimmune
		thrombocytopenia

Molecular mechanism of immunosuppressive drugs

Corticosteroids

- Mechanism of action
 - Inhibit macrophage function
 - Reduce cytokine production and adhesion molecule expression
 - Induced lymphocyte apoptosis
- Side effects

Diabetes, osteoporosis, weight gain, psychological disturbances, ulcers, wound healing, adrenal suppression

- Difference phases of therapy
- Induction phase: *T cells are the primary mediators of rejection*
 - Administered immediately post-transplant to induce immunosuppression
 - Potent immunosuppressive drugs
 - For T cell depletion, interrupt T cell activation & proliferation
 - O Depleting (polyclonal) antibodies / Non-depleting antibodies
- Maintenance therapy
 - Administered to maintain immunosuppression after recovered from operative procedure
 - Combination of low dose of drugs
 - Non-overlapping toxicities

Induction regimens

- High dose of conventional immunosuppressive agents
 - Corticosteroids: Prednisone
 - Antimetabolites: MMF or Azathioprine
 - Calcineurin inhibitors: Cyclosporine or Tacrolimus
- PLUS
 - One or more of the following antibody reagents:
 - O IL-2 receptor antagonist: Basiliximab
 - O Polyclonal anti-thymocyte Ab: ATG
 - O Monoclonal anti-thymocyte Ab: Alemtuzumab

Maintenance regimens

- Multiple drug therapy using combinations of two or three of the following types ofimmunosuppressantCalcineurin inhibitor:Cyclosporine or tacrolimusAnti-metabolite:Azathioprine or MMF
 - Corticosteroid: Prednisone (tapered over the 1st year)
 - mTor inhibitors: Sirolimus or Everolimus (in place of a CNI or antimetabolite)
- Complication of immunosuppression
- Risk of infection
 - Highest 6 -12 weeks after transplantation
 - Prophylactic regimen is needed
- Risk of malignancy
 - 10-fold increase in malignancy rate
 - Skin cancers (SCC)

Virally mediated tumors – HPV (CA cervix), HBV, HCV (HCC), HSV (Kaposi's sarcoma), EBV (PTLD)

Reference

- Angelika C. Gruessner, Tun Jie, Klearchos Papas, et al. Transplantation. In: *Schwartz's Principles of Surgery*, 10th ed. New York: McGraw-Hill; 2015:321–63.
- Andrew B. Adams, Allan D. Kirk, Christian P. Larsen. Transplantation Immunobiology and Immunosuppression. In: *Sabiston Textbook of Surgery: The Biologic Basis of Modern Surgical Practice*. 19th ed. Philadelphia: W.B. Saunders; 2012:617–54.
- Transplantation Immunology. In: Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai. *Cellular and Molecular Immunology*, 8th ed. Philadelphia: Elsevier Saunders; 2014: 359–81.
- ประเวชย์ มหาวิทิตวงศ์. Transplantation Immunology, Lecture session in Fundamental surgical science, Royol College of Surgeons of Thailand, 2016.